Hall, Baroni & Denton [2004]

Low-order gravity field & sealevel: Antarctic contribution to Late-Pleistocene & Holocene ocean volume changes

E. R. Ivins R. S. Gross X. Wu

JPL/Caltech Pasadena, California, USA

- Goal evaluate ocean secular geoid signal as "noise" in the detection of Antarctic rebound/mass balance signal
- Problem crustal monitoring stations are dominantly coastal

QuickTime™ and a Video decompressor are needed to see this picture.

QuickTime[™] and a Video decompressor are needed to see this picture. QuickTime™ and a Video decompressor are needed to see this picture. QuickTime™ and a Video decompressor are needed to see this picture. Austral spring

ECCO prediction at VESL

Conclusions

- Non-assimilated ECCO model allows examination of continental ACC geoid signature over land
- 23 yr. simulation indicates <u>small</u> 'secular' trends in geoid w.r.t. rebound & imbalance signatures
- Largest 5-year 'window' secular value is < dN/dt > ~
 0.06 0.08 mm/yr (O'Higgins, Trinity Peninsula)
- Dronning Maud Land ice core record consistent with the dominant periods of the ECCO simulated ACC
- Short multiday multiweek observations of rebound or mass balance do need ocean mass corrections (GOCE gravity, QC-GPS, GLAS)

Geodetic fields induced by longterm background ocean mass

KERG geoid

Fluctuating component for ECCO model

Antarctic Austral winter months

Austral summer

- Interdecadal or secular signals due to the Antarctic Circumpolar Current (ACC)?
- Rebound geoid change detection
 ~ 0.25 mm/yr (0.5mm/yr)
- Rebound vertical rates ~ 1 30 mm/yr (0.5 - 4 mm/yr)
- Ice cores reveal two dominant periodicities: 12.8 & 4.4 yr. in ACC related precipitation in Dronning Maud Land

Ocean Mass Crustal Loading

- 23 year average from JPL/ECCO model rur (1980 - 2003)
- fluctuations about mean every 10 d
- Truncation to degree/order = 72
- mass conservation and non-data assimilated (79.5N to 79.5 S)

vertcal deflection on 20-year time average of ECCO 1980-2003

